SYNTHESIS AND SAPONIFICATION OF ETHYL ESTERS OF cis- AND trans- β-4-ALKOXYBENZOYL- β - AND - α-BROMOACRYLIC ACIDS*

V.Zikán, M.Semonský, H.Škvorová, B.Kakáč, J.Holubek and H.Veselá
Research Institute of Pharmacy and Biochemistry, 13060 Prague 3

Received December 18th, 1975

Abstract

Wittig's method was used for synthesizing the ethyl esters of β-4-pentoxybenzoyl-and $\beta-4$-methoxy-benzoyl- β-bromoacrylic acid ($V, X I$) which represent mixtures of $70-75 \%$ trans and $25-30 \%$ cis: Br, H isomers. Saponification, using a mixture of dilute sulfuric and acetic acids, of ester V yielded β-4-pentoxybenzoyl- β-bromoacrylic acid (VIII), a mixture of cis with some 10% trans: Br, H isomer; that of ester $X I$ yielded cis- β-4-methoxybenzoyl- β-bromoacrylic acid $(X I I)$. When a mixture of hydrobromic and acetic acids was used, ester V yielded a mixture of substances from which threo- β-4-pentoxybenzoyl- α, β-dibromopropionic acid (VI) and trans- β-4-pentoxybenzoylacrylic acid (VII) were isolated. The methyl ester of cis- $\beta-4$-pentoxybenzoyl- β-bromoacrylic acid ($I X$) was prepared in a reaction of diazomethane with the cis acid. Wittig's method was used to synthesize the ethyl ester of β-4-pentoxybenzoyl- α-bromoacrylic acid (XIII), a mixture of 79% trans and 21% cis: Br, H isomers. Saponification of ester XIII yielded the trans acid $X I V$. None of $V, I X, X I, X I I I$ and $X I V$ displayed an appreciable antineoplastic effect in mice and rats with transplanted tumours.

In connection with studying the properties of cis- β-4-pentoxybenzoyl- β-bromoacrylic acid (cis: $\mathrm{Br}, \mathrm{H})\left(\right.$ ref. ${ }^{1}$) which is antineoplastically active against experimental tumours in animals upon oral application, as well as in the context of examining the cytostatically active cis- β-4-methoxybenzoyl- β-bromoacrylic acid** the preparations of some novel derivatives of the above acids was taken up here.

To prepare the trans isomers of the esters Wittig's reaction was used. The starting 4 -pentoxy- ω-bromoacetophenone (I) was obtained by bromination of 4-pentoxyacetophenone in dioxane and diethyl ether. Its reaction with triphenylphosphine led to triphenyl(4-pentoxybenzoyl)methylphosphonium bromide (II) which was converted to triphenyl(4-pentoxybenzoyl)methylenephosphorane (III) and this was then brominated to triphenyl(4-pentoxybenzoyl)bromomethylenephosphorane (IV). Compound $I V$ reacted with the ethyl ester of glyoxylic acid to the ethyl ester of $\beta-4$-pentoxy-

[^0]benzoyl- β-bromoacrylic acid (V). The ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of ester V showed the product to be a mixture of about $70-75 \%$ trans and $25-30 \%$ cis isomers. Saponification of ester V by boiling in a mixture of hydrobromic and acetic acids resulted in a product which was chromatographed on a column of silica gel and resolved into threo- β-4-pentoxybenzoyl- α, β-dibromopropionic acid (VI) and trans- β-4-pentoxybenzoylacrylic acid (VII). Boiling of ethyl ester V with a mixture of dilute sulfuric and acetic acids yielded β-4-pentoxybenzoyl- β-bromoacrylic acid (VIII) which is, according to ${ }^{1} \mathrm{H}$-NMR spectra, a mixture of the cis with some 10% trans isomer.

For a comparison with analogous 4-methoxybenzoyl compounds, triphenyl-(4-methoxybenzoyl)bromomethylenephosphorane (X) was prepared. This was condensed with the ethyl ester of glyoxylic acid to the ethyl ester of β-4-methoxybenzoyl-$-\beta$-bromoacrylic acid (XI) which is a mixture of $70-75 \%$ trans and $25-30 \%$ cis isomers, like ester V. Boiling of ester $X I$ with dilute sulfuric and acetic acids yielded cis- β-4-methoxybenzoyl- β-bromoacrylic acid (XII) which is identical with the authentic sample ${ }^{2}$. To check the configuration of the cis isomers present in ester V or in acid VIII, authentic cis- β-4-pentoxybenzoyl- β-bromoacrylic acid ${ }^{1}$ was methylated with diazomethane to a homogeneous methyl ester of cis- β-4-pentoxybenzoyl- β-bromoacrylic acid $(I X)$. Comparison of the chemical shifts of $(=\mathrm{CH})$ in the ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectra yielded the corresponding values for the cis: Br, H isomers found in compounds V and VIII, as well as in compounds $X I$ and $X I I$.

	R^{1}	X	Y	R^{2}
V	$\mathrm{C}_{5} \mathrm{H}_{11}$	Br	H	$\mathrm{C}_{2} \mathrm{H}_{5}$
VIII	$\mathrm{C}_{5} \mathrm{H}_{11}$	Br	H	H
$I X$	$\mathrm{C}_{5} \mathrm{H}_{12}$	Br	H	CH_{3}
$X I$	CH_{3}	Br	H	$\mathrm{C}_{2} \mathrm{H}_{5}$
$X I I$	CH_{3}	Br	H	H
XIII	$\mathrm{C}_{5} \mathrm{H}_{11}$	H	Br	$\mathrm{C}_{2} \mathrm{H}_{5}$
XIV	$\mathrm{C}_{5} \mathrm{H}_{11}$	H	Br	H

In further work we were interested in a comparison of the antineoplastic activity of β-4-pentoxybenzoyl β-bromoacrylic acid and of its α-analogue, i.e. β-4-pentoxy-benzoyl- α-bromoacrylic acid. Condensation with triphenylethoxycarbonylbromomethylenephosphorane with 4-pentoxyphenylglyoxal yielded the ethyl ester of β-4-pentoxybenzoyl- α-bromoacrylic acid (XIII) which, according to the chemical shifts of $(=\mathrm{CH})$, is a mixture of 79% trans and 21% cis isomers. Boiling of ethyl ester $X I I I$ with dilute acetic and sulfuric acids yielded trans- β-4-pentoxybenzoyl- α-bromo-
acrylic acid (XIV). Saponification of ester XIII led to the formation of an energetically more stable acid $X I V$; in the series of β-bromo derivatives, esters V and $X I$ were saponified to the cis isomer, or to the cis isomer with a small amount of the trans isomer of acid XII or VIII.

Compounds $V, I X, X I, X I I I, X I V$ were orientatively evaluated for antineoplastic activity in female mice of strain H with transplantable tumours: Crocker's solid sarcome 180 (S 180), mammary adenocarcinome (HK) and ascitic sarcome 37 (S 37); further in Wistar rats with Yoshida's transplantable ascitic sarcome (Y). The compounds were applied in daily doses of 100 and $200 \mathrm{mg} / \mathrm{kg}$ p.o. in an aqueous suspension and in an olive oil suspension, on the 8th day after transplantation in the case of solid tumours in a total of 10 daily doses, and on the day after transplantation, in a total of 8 daily doses in the case of the $S 37$ tumour and in 5 doses in the case of the Y tumour. The size of the tumours and the survival of the control group of animals is taken as 100%. Compound V, in a daily dose of $200 \mathrm{mg} / \mathrm{kg}$ resulted in a survival increase by 20% in the case of the S 180 tumour while it had no effect on tumour size. In the case of the S 37 tumour, application of $X I$ in a daily dose of $200 \mathrm{mg} / \mathrm{kg}$, inhibited tumour growth by 27%, application of $I X$ in a daily dose of $100 \mathrm{mg} / \mathrm{kg}$ by 23%, without any effect on survival. In the case of $I X$ and $X I I I$, at daily doses of $100 \mathrm{mg} / \mathrm{kg}$, the survival period of treated animals with the Y tumour was increased by 35 and 31%, respectively; with $X I V$ at a daily dose of $200 \mathrm{mg} / \mathrm{kg}$, by 34%. Detailed information on the results of the testing will be published elsewhere.

EXPERIMENTAL

The melting points of the compounds shown here were determined in a capillary and are not corrected. Compounds analysis, unless stated otherwise, were dried at $0 \cdot 1$ Torr at a temperature raised in proportion to their melting point. The purity of the compounds was checked by thin-layer chromatography on Silufol UV_{254} in benzene with 1% acetic acid for VII, XII, or in benzene with 5% acetic acid for $X I V$; benzene with methanol ($7: 3$) for $I I I, I V, X$; benzene for $I, V, X I, X I I I$. The IR spectra were recorded in an Infrascan (Hilger and Watts) spectrophotometer, in a chloroform solution ($c 5 \%, 0.1 \mathrm{~mm} \mathrm{NaCl}$ cuvette), or in the form of KBr pellets. The ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectra were recorded in a Tesla 487 C spectrometer $\left(80 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$ or hexadeuteriodimethyl sulfoxide, $c 8-10 \%$, tetramethylsilane as standard).

4-Pentoxy- ω-bromoacetophenone (I)

Bromine ($58.2 \mathrm{~g}, 0.36 \mathrm{~mol}$) was added dropwise at $20^{\circ} \mathrm{C}$ and under stirring to a solution of 75 g $(0.36 \mathrm{~mol})$ 4-pentoxyacetophenone ${ }^{3}$ in 90 ml dioxane and 140 ml ether and the mixture was stirred for 45 min . After adding 90 ml ether and 90 ml water the mixture was shaken and the organic layer separated. After drying $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and filtration the solvents were distilled in water--pump vacuum. The viscous residue was dried at $40^{\circ} \mathrm{C} / 3 \mathrm{Torr}(51.2 \mathrm{~g}, 50 \%)$ and recrystallized from cyclohexane; 35.1 g , m.p. $33^{\circ} \mathrm{C}$. For $\mathrm{C}_{13} \mathrm{H}_{17} \mathrm{BrO}_{2}$ (2852) calculated: $54.75 \% \mathrm{C}, 6.01 \% \mathrm{H}$, $28.02 \% \mathrm{Br}$; found: $54 \cdot 62 \% \mathrm{C}, 5 \cdot 95 \% \mathrm{H}, 27.92 \% \mathrm{Br}$.

Triphenyl(4-pentoxybenzoyl)methylphosphonium Bromide (II)
A solution of $29 \mathrm{~g}(0 \cdot 11 \mathrm{~mol})$ triphenylphosphine in 165 ml benzene was added to a solution of $31 \mathrm{~g}(0.1 \mathrm{~mol}) 4$-pentoxy- θ-bromoacetophenone (I) in 165 ml benzene at $20^{\circ} \mathrm{C}$ and the mixture was stirred for 5 min and then left to stand for 3 h at $0^{\circ} \mathrm{C}$. Filtration produced $35.4 \mathrm{~g}(60 \%)$ pro-
duct melting at $70-72^{\circ} \mathrm{C}$ which crystallized from aqueous ethanol to a m.p. of $87-89^{\circ} \mathrm{C}$. For $\mathrm{C}_{31} \mathrm{H}_{32} \mathrm{BrO}_{2} \mathrm{P}(547 \cdot 5)$ calculated: $68.00 \% \mathrm{C}, 5 \cdot 89 \% \mathrm{H}, 14 \cdot 59 \% \mathrm{Br}$; found: $68.36 \% \mathrm{C}, 5.98 \% \mathrm{H}$, $14.47 \% \mathrm{Br}$.

Triphenyl(4-pentoxybenzoyl)methylenephosphorane (III)

A solution of $0.64 \mathrm{~g}(0.028 \mathrm{~mol})$ sodium in 25 ml ethanol was added dropwise under stirring over a period of 10 min at $20^{\circ} \mathrm{C}$ to a suspension of $10 \mathrm{~g}(0.018 \mathrm{~mol})$ triphenyl(4-pentoxybenzoyl) methylphosphonium bromide ($I I$) in 25 ml ethanol. 150 ml chloroform was added dropwise to the mixture under stirring and after 10 min the precipitated sodium bromide was filtered off and the filtrate freed of solvents by distillation in water-pump vacuum. The residue ($8.5 \mathrm{~g}, 100 \%$) was crystallized from ethyl acetate. A total of 6 g product melting at $178-180^{\circ} \mathrm{C}$ was obtained. For $\mathrm{C}_{31} \mathrm{H}_{31} \mathrm{O}_{2} \mathrm{P}$ (466.5) calculated: $79.80 \% \mathrm{C}, 6.70 \% \mathrm{H}, 6.64 \% \mathrm{P}$; found: $79.45 \% \mathrm{C}, 7.01 \% \mathrm{H}$, $6.68 \% \mathrm{P}$.

Triphenyl(4-pentoxybenzoyl)bromomethylenephosphorane (IV)

A solution of 3.34 g bromine (0.021 mol) in 20 ml tetrachloromethane was added dropwise under stirring over a period of 10 min at $-70^{\circ} \mathrm{C}$ to a solution of $9.32 \mathrm{~g}(0.02 \mathrm{~mol})$ triphenyl(4-pentoxybenzoyl)methylenephosphorane (III) in 60 ml dichloromethane. The mixture was stirred for 10 min under cooling and for 1 h at room temperature, freed of solvents by distillation in water--pump vacuum and the residue (14 g) was dissolved under stirring at $20^{\circ} \mathrm{C}$ in 50 ml of a mixture of acetone and water ($4: 3$). The solution was filtered, alkalified with $1 \mathrm{~m}-\mathrm{NaOH}$ to phenolphthalein, diluted with 50 ml water and left to stand overnight at $0^{\circ} \mathrm{C}$. The filtered product was dried in a vacuum desiccator; $9 \cdot 3 \mathrm{~g}(85 \%)$, m.p. $120-122^{\circ} \mathrm{C}$, and recrystallized from aqueous acetone, m.p. $122-124^{\circ} \mathrm{C}$. For $\mathrm{C}_{31} \mathrm{H}_{30} \mathrm{BrO}_{2} \mathrm{P}(545 \cdot 4)$ calculated: $14.65 \% \mathrm{Br}, 5.68 \% \mathrm{P}$; found: $14.52 \% \mathrm{Br}$, $5.66 \% \mathrm{P}$.

Ethyl Ester of β-4-Pentoxybenzoyl- β-bromoacrylic Acid (V) (mixture of about $70-75 \%$ trans and $25-30 \%$ cis: Br, H)

A solution of $0.75 \mathrm{~g}\left(0.0073^{\circ} \mathrm{mol}\right)$ ethyl ester of glyoxylic acid ${ }^{4}$ in 30 ml benzene was added to a solution of 4 g (0.0073 mol) triphenyl(4-pentoxybenzoyl)bromomethylenephosphorane (IV) in 100 ml benzene and the mixture was refluxed for 4 h in an atmosphere of nitrogen. After standing overnight at $20^{\circ} \mathrm{C}$ the solvent was distilled in water-pump vacuum and the residue (5.26 g) was purified by chromatography on a column of silica gel (80 g), using benzene for elution. The front fractions were pooled, filtered and, after distillation of benzene in water-pump vacuum, the oily residue was dried at $40^{\circ} \mathrm{C} / 0.5$ Torr; $2.44 \mathrm{~g}(90 \%)$, $n_{\mathrm{D}}^{20} 1 \cdot 5550$. For $\mathrm{C}_{17} \mathrm{H}_{21} \mathrm{BrO}_{4}$ (369.2) calculated: $55 \cdot 29 \% \mathrm{C}, 5 \cdot 73 \% \mathrm{H}, 21 \cdot 64 \% \mathrm{Br}$; found: $55 \cdot 23 \% \mathrm{C}, 5 \cdot 69 \% \mathrm{H}, 21 \cdot 45 \% \mathrm{Br}{ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum $\left(\mathrm{CDCl}_{3}\right): \delta 6.75(\mathrm{~s}(=\mathrm{CH})$ trans-isomer $70-75 \%), 6.56(\mathrm{~s},(=\mathrm{CH})$ cis-isomer $25-30 \%)$. IR spectrum (CHCl_{3}): 1720 (ester), 1665 (conjugated $\mathrm{C}=\mathrm{O}$), 1597,1572 (conjugated $\mathrm{C}=\mathrm{O}$, aromatic vibrations), $1509,826 \mathrm{~cm}^{-1}$ (p-substituted aromatic ring).

Saponification of the Ethyl Ester of β-4-Pentoxybenzoyl- β-bromoacrylic Acid (V)

A. Mixture of $5.56 \mathrm{~g}(0.015 \mathrm{~mol})$ ethyl ester of β-4-pentoxybenzoyl- β-bromoacrylic acid (V), 93 ml glacial acetic acid and $18.7 \mathrm{ml} 46 \%$ hydrobromic acid was refluxed for 1 h , cooled, diluted with 500 ml water and extracted with $5 \times 250 \mathrm{ml}$ ether. Pooled ether fractions were extracted with $2 \times 50 \mathrm{ml}$ water, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and the filtrate was freed of solvents by distillation
in watter-pump vacuum. The residue was dried at $40^{\circ} \mathrm{C} / 1$ Torr (6.24 g) and separated by chromatography on a column of silica gel (70 g) using benzene, or benzene plus 1% methanol, for elution.

The combined front fractions ($3 \cdot 1 \mathrm{~g}$) were crystallized from a mixture of benzene and cyclohexane to β-4-pentoxybenzoyl- α, β-dibromopropionic acid (threo - VI), m.p. $149-150^{\circ} \mathrm{C}$. For $\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{Br}_{2} \mathrm{O}_{4}(422 \cdot 1)$ calculated: $42 \cdot 67 \% \mathrm{C}, 4.29 \% \mathrm{H}, 37 \cdot 86 \% \mathrm{Br}$; found: $42.78 \% \mathrm{C}, 4 \cdot 18 \% \mathrm{H}$, $37.46 \% \mathrm{Br}$. IR spectrum (KBr): 845 (para-substituted aromatic ring) $960(-\mathrm{COOH}), 1180$ (aromatic ether), $1510,1580,1605$ (Ar), 1675 ($\mathrm{Ar}-\mathrm{CO}$), 1715 (nonconjugated COOH), 2845, $2912\left(\mathrm{CH}_{3}, \mathrm{CH}_{2}\right) .{ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum hexadeuteriodimethyl sulfoxide: $\delta 8 \cdot 12,7.08(\mathrm{ABq}, J=$ $=8.0 \mathrm{~Hz}, 4 \mathrm{H}$, aromatic protons); $5.90(\mathrm{~d}, J=11.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArCOOH}) ; 4.76(\mathrm{~d}, J=11.0 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{BrCH}-\mathrm{CO}) ; 4.10\left(\mathrm{t}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArOCH}_{2}\right) ; 1 \cdot 2-1.9\left(\mathrm{~m}, 6 \mathrm{H},\left(\mathrm{CH}_{2}\right)_{3}\right), 0.92(\mathrm{t}, 3 \mathrm{H})$.

Homogeneous fractions were pooled from the slower-moving components ($1 \cdot 1 \mathrm{~g}$) and crystallized from a mixture of benzene and cyclohexane to trans- β - 4 -pentoxybenzoylacrylic acid (VII), m.p. $131-133^{\circ} \mathrm{C}$. For $\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{O}_{4}$ (262.3) calculated: $68.68 \% \mathrm{C}, 6.92 \% \mathrm{H}$; found: $68.22 \% \mathrm{C}$, 6.87% H. IR spectrum (KBr): 1180 (aromatic ether), 840, 1512,1600 (para-substituted aromatic ring), $1260(\mathrm{CO}), 1620$ (conjugated $\mathrm{C}=\mathrm{C}$), 1668 ($\mathrm{Ar}-\mathrm{CO}$), 1695 (conjugated COOH), 2870, $2940\left(\mathrm{CH}_{3}, \mathrm{CH}_{2}\right) .{ }^{1} \mathrm{H}$-NMR spectrum hexadeuteriodimethyl sulfoxide: $\delta 8.02 ; 7.06(\mathrm{ABq}, J=$ $=8.0 \mathrm{~Hz}, 4 \mathrm{H}$, aromatic protons); $7.88(\mathrm{~d}, J=15.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArCOCH}=) ; 6.65(\mathrm{~d}, J=15.0$ $\mathrm{Hz}, 1 \mathrm{H},=\mathrm{CHCOOH}) ; 4.08\left(\mathrm{t}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArOCH}_{2}\right) ; 1.20-1.90\left(\mathrm{~m}, 6 \mathrm{H},\left(\mathrm{CH}_{2}\right)_{3}\right) ;$ 0.92 (t, 3 H).
B. A mixture of 2 g (0.0054 mol) ethyl ester of β-4-pentoxybenzoyl β-bromoacrylic acid ($70-75 \%$ trans and $25-30 \%$ cis, V) 35 ml glacial acetic acid and 10 ml dilute sulfuric acid ($1: 2$) was refluxed for 1 h , diluted with 200 ml water and extracted with $5 \times 100 \mathrm{ml}$ ether. The pooled ether fractions were extracted with $2 \times 30 \mathrm{ml}$ water, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and ether was distilled in water-pump vacuum. The residue ($1.8 \mathrm{~g}, 97 \%$) was recrystallized from cyclohexane; 1 g product, melting at $90-95^{\circ} \mathrm{C}$. For $\mathrm{C}_{15} \mathrm{H}_{17} \mathrm{BrO}_{4}$ (341.2) calculated: $52.80 \% \mathrm{C}, 5.02 \% \mathrm{H}, 23 \cdot 42 \% \mathrm{Br}$; found: $53 \cdot 24 \% \mathrm{C}, 5 \cdot 18 \% \mathrm{H}, 23 \cdot 19 \% \mathrm{Br} .{ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum $\left(\mathrm{CDCl}_{3}\right): \delta 6.50(\mathrm{~s},(=\mathrm{CH})$ cis isomer c. 90%); $6.75(\mathrm{~s},(=\mathrm{CH})$ trans isomer c. $10 \%)$.

Methyl Ester of β-4-Pentoxybenzoyl- β-bromoacrylic Acid (cis: Br, H) (IX)

A solution of $2.7 \mathrm{~g}(0.064 \mathrm{~mol})$ diazomethane in 250 ml ether was added dropwise at $0^{\circ} \mathrm{C}$ to a solution of $21.9 \mathrm{~g}(0.064 \mathrm{~mol})$ cis- $\beta-4$-pentoxybenzoyl- β-bromoacrylic acid ${ }^{1}$ in 250 ml ether. The mixture was kept for 1 h at $0^{\circ} \mathrm{C}$ and left to stand overnight at $20^{\circ} \mathrm{C}$. Ether was distilled off in water--pump vacuum and the residue was purified by chromatography on a column of silica gel (50 g) using benzene for elution. The yield was $21.9 \mathrm{~g}(96 \%)$ oil which was dried at $40^{\circ} \mathrm{C} / 0 \cdot 1 \mathrm{Torr}$; $n_{\mathrm{D}}^{20} 1 \cdot 5610$. For $\mathrm{C}_{16} \mathrm{H}_{19} \mathrm{BrO}_{4}$ (355.2) calculated: $54 \cdot 09 \% \mathrm{C}, 5 \cdot 39 \% \mathrm{H}, 22 \cdot 49 \% \mathrm{Br}$; found: $54 \cdot 12 \%$ $\mathrm{C}, 5 \cdot 32 \% \mathrm{H}, 22.55 \% \mathrm{Br}$. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum $\left(\mathrm{CDCl}_{3}\right): \delta 6.61(\mathrm{~s},(-\mathrm{CH})$ cis isomer).

Triphenyl(4-methoxybenzoyl)bromomethylenephosphorane (X)

A solution of $3.34 \mathrm{~g}(0.021 \mathrm{~mol})$ bromine in 20 ml tetrachloromethane was added under stirring over a period of 10 min at $-70^{\circ} \mathrm{C}$ to a solution of $8.2 \mathrm{~g}(0.02 \mathrm{~mol})$ triphenyl(4-methoxybenzoyl)methylenephosphorane ${ }^{5}$ in 60 ml dichloromethane. The mixture was stirred for 30 min at room temperature and the solvents were distilled off under water-pump vacuum. The residue (13.4 g) was dissolved at $20^{\circ} \mathrm{C}$ in 600 ml of a mixture of acetone and water (4:3), the filtrate was alkalified with $1 \mathrm{~m}-\mathrm{NaOH}$ to phenolphthalein and the mixture was diluted with 600 ml water and left to stand overnight at $0^{\circ} \mathrm{C}$. The precipitate was filtered ($8 \mathrm{~g}, 82 \%$). The product was purified for
analysis by crystallization from aqueous acetone, m.p. $162-163^{\circ} \mathrm{C}$. For $\mathrm{C}_{27} \mathrm{H}_{22} \mathrm{BrO}_{2} \mathrm{P}$ (489.3) calculated: 6.33% P; found: $6 \cdot 15 \% \mathrm{P}$.

Ethyl Ester of β-4-Methoxybenzoyl- β-bromoacrylic Acid (XI) (mixture of about 70-75\% trans and $25-30 \% c i s$)

A solution of $0.83 \mathrm{~g}(0.008 \mathrm{~mol})$ ethyl ester of glyoxylic acid ${ }^{4}$ in 30 ml benzene was added to a solution of $4 \mathrm{~g}(0.008 \mathrm{~mol})$ triphenyl(4 -methoxybenzoyl)bromomethylenephosphorane (X) in 100 ml benzene and the mixture was refluxed for 4 h in an atmosphere of nitrogen and left to stand overnight at room temperature. The solvent was distilled off in water-pump vacuum and the residue (5.46 g) was resolved by chromatography on a column of silica gel (80 g) using benzene for elution. The combined front fraction were filtered, benzene was distilled off under water-pump vacuum and the oily residue was dried at $35^{\circ} \mathrm{C} / 0.2$ Torr; $2.4 \mathrm{~g}(93 \%), n_{\mathrm{D}}^{20} 1 \cdot 5827$. $\mathrm{For}^{\mathrm{C}} \mathrm{C}_{13} \mathrm{H}_{13} \mathrm{BrO}_{4}$ ($313 \cdot 1$) calculated: $49 \cdot 86 \% \mathrm{C}, 4 \cdot 18 \% \mathrm{H}, 25 \cdot 52 \% \mathrm{Br}$; found: $50 \cdot 15 \% \mathrm{C}, 4 \cdot 17 \% \mathrm{H}, 25 \cdot 27 \% \mathrm{Br}$. IR spectrum (CHCl_{3}): 1720 (ester), 1665 (conjugated CO), 1596,1571 (conjugated $-\mathrm{C}=\mathrm{C}-$ and aromatic) $1508,825 \mathrm{~cm}^{-1}$ (para-substituted aromatic ring). ${ }^{1} \mathrm{H}$-NMR spectrum (CDCl_{3}): $\delta 6.80(\mathrm{~s},(=\mathrm{CH})$ trans isomer $70-75 \%) ; 6.63(\mathrm{~s},(=\mathrm{CH})$ cis isomer $25-30 \%)$.

β-4-Methoxybenzoyl- β-bromoacrylic Acid (cis XII)

A mixture of $3.4 \mathrm{~g}(0.011 \mathrm{~mol})$ ethyl ester of β-4-methoxybenzoyl- β-bromoacrylic acid ($70-75 \%$ trans and $25-30 \%$ cis isomers, $X I) 55 \mathrm{ml}$ glacial acetic acid and 14 ml dilute sulfuric acid (1:2) was refluxed for 1 h , the mixture was diluted with 340 ml water and extracted with $5 \times 150 \mathrm{ml}$ ether. The pooled ether fractions were extracted with $2 \times 75 \mathrm{ml}$ water, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and ether was distilled off under water-pump vacuum. The residue ($3 \mathrm{~g}, 97 \%$) was purified by chromatography on a column of silica gel (60 g) using benzene and 1% ethanol for elution. The corresponding fractions were pooled (2.6 g) and recrystallized from benzene, m.p. $141-143^{\circ} \mathrm{C}$. For $\mathrm{C}_{11} \mathrm{H}_{9} \mathrm{BrO}_{4}$ (285.1) calculated: $46 \cdot 34 \% \mathrm{C}, 3 \cdot 18 \% \mathrm{H}, 28 \cdot 03 \% \mathrm{Br}$; found: $\mathbf{4 6} \cdot \mathbf{7 7} \% \mathrm{C}, 3 \cdot 23 \% \mathrm{H}$, $28.18 \% \mathrm{Br}$. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum hexadeuteriodimethylsulfoxide: $\delta 6.69$ (s, ($=\mathrm{CH}$) cis isomer).

Ethyl Ester of β-4-Pentoxybenzoyl- α-bromoacrylic Acid (XIII) (mixture of 79% trans and 21% cis: Br, H)
A filtered solution of $10.1 \mathrm{~g}(0.042 \mathrm{~mol})$ monohydrate of 4-pentoxyphenylglyoxal ${ }^{6}$ in 200 ml benzene was added to a solution of $18 \mathrm{~g}(0.042 \mathrm{~mol})$ triphenylethoxycarbonylbromomethylenephosphorane ${ }^{7}$ in 400 ml benzene. The mixture was refluxed for 4 h in an atmosphere of nitrogen, left to stand for 24 h at $20^{\circ} \mathrm{C}$ and the solvent removed by distillation under water-pump vacuum. The residue (28 g) was resolved by chromatography on a column of silica gel (100 g), using benzene for elution. The homogeneous front fractions were pooled, benzene was removed by distillation under water-pump vacuum and the residue ($15 \mathrm{~g}, 96.4 \%$) was dried at $40^{\circ} \mathrm{C} / 0.1 \mathrm{Torr}$; $\mathrm{n}_{\mathrm{D}}^{20} 1.5555$. For $\mathrm{C}_{17} \mathrm{H}_{21} \mathrm{BrO}_{4}$ (369-2) calculated: $55 \cdot 29 \% \mathrm{C}, 5.73 \% \mathrm{H}, 21 \cdot 64 \% \mathrm{Br}$; found: $55 \cdot 58 \%$ $\mathrm{C}, 5.76 \% \mathrm{H}, 21.77 \% \mathrm{Br}$. NMR spectrum (CDCl_{3}) $\delta 8.05(\mathrm{~s}, 79 \%$ trans, $\mathrm{Ar}-\mathrm{CO}-\mathrm{CH}=$); 7.31 ($\mathrm{s}, 21 \%$ cis $\mathrm{Ar}-\mathrm{COCH}=$) ; $7.85 ; 6.88(\mathrm{ABq}, J=8.0 \mathrm{~Hz}, 4 \mathrm{H}$, aromatic protons); 4.40 $\left(\mathrm{q}, J=7 . \mathrm{OHz}, 2 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right) .4 .00\left(\mathrm{q}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArOCH}_{2}\right) ; 1 \cdot 40-1.80(\mathrm{~m}, 6 \mathrm{H}$, $\left.\left(\mathrm{CH}_{2}\right)_{3}\right) ; 1 \cdot 38\left(\mathrm{t}\right.$, trans, $\left.\mathrm{OCH}_{2} \mathrm{CH}_{3}\right) ; 1 \cdot 12\left(\mathrm{t}\right.$, cis, $\left.\mathrm{OCH}_{2} \mathrm{CH}_{3}\right) ; 0 \cdot 90\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$.
mans- β-4-Pentoxybenzoyl- α-bromoacrylic Acid (XIV)
A mixture of $2 \mathrm{~g}(0.0054 \mathrm{~mol})$ ethyl ester of β-4-pentoxybenzoyl- α-bromoacrylic acid (mixture of 79% trans and 21% cis isomers, XIII), 35 ml glacial acetic acid and 10 ml dilute sulfuric acid
(1:2) was refluxed for 1 h , diluted with 200 ml water and extracted with $5 \times 100 \mathrm{ml}$ ether. The ether fractions were pooled, extracted with $2 \times 30 \mathrm{ml}$ water, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and ether was removed by distillation under water-pump vacuum. The residue, $1.88 \mathrm{~g}(98 \%)$, m.p. $85-86^{\circ} \mathrm{C}$, was crystallized for analysis from cyclohexane, m.p. $87-89^{\circ} \mathrm{C}$. For $\mathrm{C}_{15} \mathrm{H}_{17} \mathrm{BrO} \mathrm{O}_{4}$ (341.2) calculated: $52 \cdot 80 \% \mathrm{C}, 5.02 \% \mathrm{H}, 23 \cdot 42 \% \mathrm{Br}$; found: $53 \cdot 21 \% \mathrm{C}, 5 \cdot 17 \% \mathrm{H}, 23 \cdot 42 \% \mathrm{Br} .{ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum $\left(\mathrm{CDCl}_{3}\right): \delta 8 \cdot 20(\mathrm{~s},(=\mathrm{CH})$ trans isomer $)$.

The analyses were done in the analytical department of this Institute by Mrs J. Komancova, Mrs V. Šmidová and Mr M. Cech under the direction of Dr J. Körbl.

REFERENCES

1. Semonský M., Zikán V., Vrba L., Jelínek V., Slavíková V., Slavík K., Kakáč B.: Pharmazie 26, 286 (1971).
2. Semonský M., Ročková E., Zikán V., Kakảč B., Jelinek V.: This Journal 28, 377 (1963).
3. Profft E.: Arzneim.-Forsch. 8, 269 (1958).
4. Criege R.: Ber. 64, 260 (1931).
5. Dombrovskij A. V., Ševčuk M. C.: Zh.: Obshch. Khim. 33, 1263 (1963).
6. Schubert H., Eissfeldt I., Lange R., Trefflich F.: J. Prakt. Chem. 33, 265 (1966).
7. Denney B. B., Ross T. S.: J. Org. Chem. 27, 998 (1962).

Translated by A. Kotyk.

[^0]: * Part LVII in the series Substances with Antineoplastic Activity; Part LVI: This Journal 40, 2883 (1975).
 ** The sodium salt of cis- β-4-methoxybenzoyl- β-bromoacrylic (cis: Br, H) acid is an active component of the cytostatic Cytembena-Spofa.

